# レーザ走査による貯炭レベル測定装置の開発

- ㈱四国総合研究所 エネルギー技術部 高橋 克征
- ㈱四国総合研究所 エネルギー技術部 宮崎 習
  - 四国電力㈱ 火力本部 田村 英樹
    - 四国電力(株) 火力本部 片上 正司
- 四国電力㈱ 火力本部(現:四電ビジネス㈱) 今川 重喜

 キーワード:
 石炭体積測定
 Key Words:
 C

 レーザ計測
 I

 発熱監視
 F

 防爆措置
 F

 粉じん汚損防止
 A

Key Words : Coal volume measurement Laser measurement Heat monitoring Explosion proof measure Anti-dust control

#### Development of measuring equipment for coal volume using laser scanning

Shikoku Research Institute, Inc., Energy Engineering Department Yoshiyuki Takahashi, Manabu Miyazaki Shikoku Electric Power Co., Inc. Thermal Power Division Hideki Tamura, Shoji Katagami, Shigeki Imagawa

#### Abstract

In general, a huge volume of coal in a silo is measured by several microwave level meters and managed at a coalfired power plant. However, since the shape of coal in a silo is complicated, a highly accurate measuring equipment is required. Therefore, we developed an equipment to measure coal volume in a silo using laser scanning. The equipment automatically starts measurement at a set time every night, and can visualize the three-dimensional shape of coal in the silo.

## 1. はじめに

従来から石炭火力発電所では、超音波式レベル 計(常設装置)とメジャー測定(手作業)による 9 個所の平均高さから、サイロ内石炭の体積量を計 算して管理している。

しかし、サイロ上部から投入された石炭は、4 つの下部ホッパから払い出されて複雑な貯炭形 状へ変化するため、測定精度や再現性が十分では ない。このため、貯炭体積量を高精度に測定でき、 サイロ内貯炭形状を可視化できる装置へのニー ズが非常に高い。

そこで、最新のレーザ距離センサを活用した高 精度なレベル測定が可能な装置を開発し、本運用 されることとなったので、特徴と運用状況を報告 する。

## 2. 本装置の仕様

開発した貯炭レベル測定装置は、石炭表面をレ ーザ走査し、その貯炭形状から体積量を算出する 装置である。

本装置は、レーザを高精度に走査するメカユニ ット、制御・体積計算する制御ユニット、遠隔監 視するPCから構成されている。構成図と装置外 観を図1、図2に、主な仕様を表1に示す。

装置外観は、点検などで装置をサイロ内から吊 り上げた状態であり、通常運用では、風雨対策用 カバーを設置している。



図2 装置外観(装置上架時)

表1 装置の主な仕様

| 項目    | 備考                             |  |  |
|-------|--------------------------------|--|--|
| 設置場所  | サイロ上部(屋外)                      |  |  |
| 目標精度  | 全貯炭体積量±0.5%以下                  |  |  |
| 測定原理  | レーザ(クラス1)                      |  |  |
| 防爆対策  | 光ファイバ分離式レーザヘッド、<br>マグネットカップリング |  |  |
| 防塵対策  | エアパージ(4年以上汚損なし)                |  |  |
| 耐 侯 性 | PLCが制御・計算                      |  |  |
| 監視方法  | PCから遠隔監視・操作                    |  |  |
| 石炭温度  | 防爆型放射温度計                       |  |  |
| 停電対策  | UPS、停電時原点自動帰還                  |  |  |
| ノイズ対策 | ノイズカットトランス                     |  |  |
| 校正方法  | 校正用ターゲット                       |  |  |
| 保守周期  | 1年                             |  |  |

#### 3. 距離センサの選定

## 3.1 距離センサの比較

一般的な距離センサである、超音波、マイクロ 波、レーザを比較した(表 2)。いずれの距離精 度も同等であり、測定対象が平坦であれば差異は ないが、複雑な形状測定にはビーム広がりを考慮 する必要がある。日々の運用では、サイロ上部点 検口から約 15mの高さまで貯炭されることが多 い。この距離でのビーム広がりは、超音波では ¢1,575mmであり、石炭の安息角を40°とすると高 さ方向に最大 1,322mmの誤差が予測される(図 3)。

本装置の目標精度は、石炭を搬送するコンベア スケールと同等の±0.5%である。全貯炭体積量 の±0.5%は、石炭高さ±100mm に相当すること から、超音波やマイクロ波でこの精度を満たすこ とは困難である。特に壁付近では壁の影響が大き く、貯炭体積量を多く算出する。

このため、石炭表面にレーザを走査させる測定 方法が最も適していると判断した。

|                                | 超音波 <sup>※1</sup>       | マイクロ波※1                 | レーザ             |
|--------------------------------|-------------------------|-------------------------|-----------------|
| 測定距離                           | $\sim \! 70 \mathrm{m}$ | $\sim \! 70 \mathrm{m}$ | ~200m<br>低反射率対象 |
| 距離精度                           | $\pm 28$ mm             | $\pm 15$ mm             | $\pm 25$ mm     |
| ビーム径 <sup>**2</sup><br>(15m 先) | $\phi$ 1, 575mm         | φ 920mm                 | φ 30mm          |
| 積付角誤差<br>(tan 40°)             | 1,322mm                 | 772mm                   | 25mm            |
| 体積精度*3                         | $\bigtriangleup$        | $\bigtriangleup$        | 0               |

表 2 距離センサの比較

※1 発電所で使用実績のあるセンサ

※2 ビーム径が小さい程、複雑形状には高精度測定 ※3 ビーム走査による貯炭形状から算出した場合



図3 ビーム径の広がりと測定精度

## 3.2 距離センサの選定

石炭から反射されるレーザ光は極僅かである ため、斜め入射の測定には高感度なセンサが必要 となる。様々なレーザ距離センサの中で、航空機 から地上形状を測定できる高感度レーザ距離セ ンサのみが測定可能であった。そして、レーザ発 信器とレーザヘッドが光ファイバで分離された 製品(RIEGL社:LD90-3200HiP-GF)は、レーザ ヘッドのみをサイロ内へ設置でき、サイロ内に電 子機器を配置しないため、防爆性に配慮できる (図 4)。また、粉塵雰囲気でも測定できるセン サであり、本装置に適している(図 5)。



図5 粉塵雰囲気測定のイメージ

#### 4. 本装置の特徴

本装置は、高精度に走査するハードウェア、こ れを制御し体積計算するPLC、立体表示やデー タ管理するPCから構成されている。

# 4.1 ハードウェア

#### (1) 高精度走査機能

高精度にレーザ走査を制御するため、超低バッ クラッシュ高減速ギア(800:1)を用いて、バッ クラッシュによる誤差を最小限にした。高減速ギ アのため、走査速度が遅くなり測定時間が長くな るが、後述の測定点の最適化などで対処している。 また、マグネットカップリングを用いた構造に

より、モータを完全にサイロ外に配置するととも

に、機械的な貫通部をなくして、防爆性に配慮している(図 6)。



# (2) エアパージ機能

サイロ内は高湿度で、石炭受入中は多くの粉塵 が浮遊するため、レーザヘッドの汚損防止として エアパージ機能を備えている。エアカーテン方式 やスパイラル方式などでは1か月も経たずに汚 損されたが、筒内加圧式エアパージは防塵効果が 高く、4年以上汚損されていない(図7、8)。



図7 筒内加圧式エアパージ



図 8 エアパージの効果(4 年後)

## 4.2 PLC制御(PLC ソフト)

サイロ上部は夏期には 45℃を超えるため、工 業的に信頼性の高いPLC(シーケンサ)により 機器制御と体積計算を行っている。PLCソフト は以下の機能を有する。

#### (1) 自動体積量測定機能

本装置は、設定時間に自動で測定を開始し、測 定座標データから貯炭体積量を算出する。

測定点は走査角(パン、チルト)と測定距離か ら、座標を求める(図 9)。石炭と壁が接する個 所(壁座標)は装置直下からの距離が小さく変化 する前後の直線の交点としている(図 10)。

貯炭レベル測定装置



図9 測定座標の算出方法



図10 壁座標の算出方法



3つの測定点からなる三角柱を積分し、下部空 間体積量を除くことで貯炭体積量を算出する。サ イロは高くなるにつれて内径が小さくなるため、 壁高さに応じた端部体積量も加算する(図11)。

また、石炭のないサイロを測定し、正確な下部 空間体積量を貯炭体積量へ反映している(図12)。





#### (2) 最適測定点の自動選択機能

測定点は、パン角とチルト角のパターン(測定 マップ)を元にレーザ走査し、決定される。高減 速ギアにより測定に長時間を要するため、測定精 度を維持したままで測定点数を削減するなどし て、測定点の最適化を行っている。

装置直下から壁に近づくにつれてチルト角の 刻みを細かくすることで、測定点の間隔に粗密が できないよう配慮した。また、装置はサイロの中 心から偏った個所に設置されており、パン角毎に 有効なチルト角の範囲が異なるため、全パン角に 対するチルト角を固定すると不要な壁データが 多くなる(図13)。そこで、パン角毎にチルト角 範囲を調整して、体積量算出に不要な壁データを 削減した。



図 13 チルト角の刻みを最適化した測定

貯炭体積量が少ないときは石炭表面までの距離が遠くなり、同じチルト角刻みで走査すると測定点の間隔が粗くなる(有効データ数が少なくなる)。そのため、測定開始前に装置直下の距離を測定し、高さに応じた最適な測定マップを自動選択している。

これらの最適化により、当初13時間(約6,000 点)要していた測定を約1.5時間(約1,000点) に短縮した。

#### (3) サイロ内環境の自動判定機能

本装置は、多少の水蒸気(または粉塵)中でも 測定可能であるが、水蒸気過多になると石炭の反 射レーザを受信できず測定できなくなる(図14)。

この状況では原理的に貯炭体積量測定が困難 であるため、斜め遠方の壁(仮ターゲット)を測 定し、その距離からサイロ内環境の良否を自動判 定して測定を開始する。

石炭受入中は、サイロ内が粉塵で充満しないよ うに既設集塵機を稼働させている。水蒸気過多時 にこの集塵機を稼働させると、90分程度で測定 可能な環境に改善されるため、サイロ内環境が悪 い時は集塵機を稼働させることを検討している。



#### (4) データの自動処理機能

測定されたデータには体積量算出に必要のな いデータが含まれており、これを自動処理してい る。不要データには、貯炭体積量が規定量以上に ならないように監視するレベル特高センサのチ ェーンや、サイロ壁、水蒸気などがあり、周辺デ ータに比べて著しく異なるものを自動で排除し ている(図 15)。

また、貯炭体積量が多くなるとレーザの死角 (石炭山陰)が発生して、データが欠損すること がある。山陰が発生するのは、石炭を多く受け入 れた直後であるため、欠損個所を直線(安息角) とみなしている。石炭性状により安息角のばらつ きが考えられるため、欠損データ前後の壁測定点 から案分して、山陰部の壁データを補間している。



(a)不要データ等の発生個所







#### 4.3 PC制御(PC ソフト)

PCは、PLCデータを蓄積し、立体図形作成 や各センサのトレンドグラフ表示を行う。また、 PLCへアクセスでき遠隔操作も可能である。

# (1) 立体図形表示機能

PLCで測定したデータを元に、貯炭形状の立 体図形を作成している。

## (2)トレンド表示機能

レーザ測定状況(パン角、チルト角、測定距離、 レーザ反射強度)や各パージエア流量などのトレ ンドを表示させており、装置の健全性を確認する ことができる。これらのデータは無線LAN経由 でPLCから取得している。

## (3) 設定変更 任意測定機能

測定開始時間、測定マップ、仮ターゲット座標、 モータ回転数など、PLCが制御している機器の 設定変更ができる。この機能により、PCからP LCへ任意のレーザ走査測定などの遠隔操作が 可能となっている。

## (4) 石炭表面温度表示機能

本装置には、レーザ距離センサと共に防爆型放 射温度計を搭載しており、石炭表面温度も同時測 定している。平常時の温度差は僅かであり、0~ 45℃の温度幅では温度分布は明確ではないため、 温度幅を13~20℃に調整したものを図16に示す。



#### 5. 運用状況

## 5.1 貯炭体積量の測定結果

日中は石炭の受入や石炭バンカへの送炭(払 出)により貯炭体積量が変化するため、夜間に貯 炭体積量測定を行っている。日々の測定結果例を 図 17 に示す。

貯炭形状の可視化向上のため、鳥瞰図にサイロ 内壁を合成させている。



図 17 体積量測定結果

#### 5.2 温度の測定結果

石炭表面の温度測定結果を図 18 に示す。最高 温度は約 30℃であるが、壁際が局部的にやや高 くなっていることがわかる。赤外線熱画像カメラ のような高精度な発熱監視ではないが、簡易な監 視機能としての活用が期待できる。



図 18 温度測定結果

## 5.3 メンテナンストレンド

図 18 の温度測定と同日のメンテナンストレン ド画面を図 19 に示す。1 日を通して、各種パー ジエア流量は安定しており、20:00~21:30 に貯 炭体積量を測定していることがわかる。また、 6:00 ごろから日差しによるメカユニット温度の 上昇、13:00 からの石炭受入による石炭温度上昇 などが読み取れる。

このように、メンテナンストレンドにより、装 置の健全性を遠隔から確認することができる。



図 19 水蒸気過多での連続測定

#### 6. まとめ

レーザ走査式貯炭レベル測定装置は、H29年 度の試運用において、トラブルなく安定した長期 連続稼働が可能であり1年以上メンテナンスフ リーであることを確認した。これにより、H30 年度からは本運用されており、高精度の貯炭体積 量測定に加え、サイロ内貯炭形状の可視化が実現 でき、貯炭管理の高度化に貢献している。

# [謝辞]

本研究は、四国電力㈱火力部より委託を受け実 施したもので、ご協力いただいた関係各位に深く 感謝いたします。