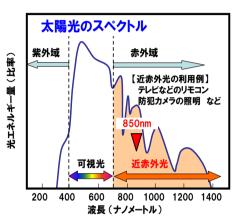


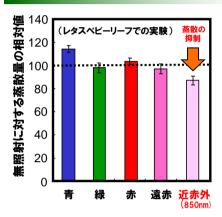
SHIKOKU RESEARCH INSTITUTE INC. 〒761-0192

✓ 四国電力グループ

香川県高松市屋鳥西町2109番地8 電話 (087)843-8111 (代) お問い合わせ専用メールアドレス irfresh@ssken.co.jp

(株)四国総合研究所と三井金属計測機工(株)は、収穫後の柑橘類に近赤外光を短時間照射するだけで その後の鮮度低下や腐りを抑制できる技術について取り組み、柑橘などの選果ラインや、イチゴ栽培現場 に利用できる処理装置を開発しました。


### 1. 近赤外光処理とは?


近赤外光は可視光(目に見える光)より波長の長い光で、太陽光にも含まれています。また、テレビのリモコンや防犯カメラの照明などにも使 われている安全な光です(①参照)。LED(発光ダイオード)等を使って、収穫後の青果物に波長850nm付近の近赤外光をごく短時間照射する だけで、蒸散(水分の放散)を抑制できることを世界で初めて発見し、世界的に権威のある学術雑誌(Postharvest Biology and Technology) に掲載されました(②参照)。その後の研究で、蒸散やそれによる萎びだけでなく、カビや腐りを抑制するなど多様な鮮度保持効果があることを 見出し、これを利用した鮮度保持技術を iR (アイアール) フレッシュ® と名付けました (特許および商標を登録済み)。 この技術は柑橘類を含 むほぼすべての青果物に対して効果を発揮します(③参照)。

#### ①近赤外光とは?

## ②蒸散量に及ぼす光照射の効果

#### ③ほとんどの青果物に効果を発揮!





| 分類  | 蒸散抑制効果の<br>認められた品目                                                     | 外観など<br>への効果             |  |
|-----|------------------------------------------------------------------------|--------------------------|--|
| 葉茎類 | レタス、リーフレタス、キャベツ、<br>ホウレンソウ、コマツナ、<br>チンゲンサイ、ネギ、アスパラガ<br>ス、ブロッコリー、オオバ など | ●しおれの低<br>減              |  |
| 果菜類 | トマト、イチゴ、ナス、キュウリ、<br>ズッキーニ、オクラ、ピーマン、<br>パプリカ、シシトウ など                    | ●みずみずし<br>さの維持<br>●傷みの低減 |  |
| 果実類 | 温州ミカンなど柑橘類、ブドウ、<br>モモ、リンゴ、パイナップル など                                    | ●ツヤの維持 ●硬さの維持 ●カビ発生や     |  |
| 根菜類 | ニンジン、ショウガ など                                                           | 腐敗の低減                    |  |
| 切花類 | キク、バラ、カーネーション など                                                       |                          |  |

## 2. 鮮度保持効果の例

近赤外光処理により蒸散が抑制されるため萎びが低減します。さらに、カビや腐りが抑制され、ミニトマトでは裂果が抑制できます。この効果 はカット野菜でも発揮され、生菌数が抑制できます。処理方法は、コンベア速度等に応じて光強度を調節することで、最短0.1秒の照射時間で の連続処理が可能です。

#### ①萎びの抑制(ホウレンソウ)

#### 無処理



処理



(10℃-6日保管後)

#### ②カビや裂果の抑制(ミニトマト)

無処理



ミニトマト計量機への実装事例

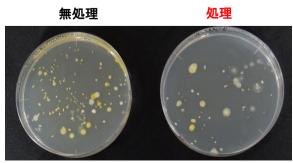


(25℃・3日保管後)



(AZUMA FARM三重、三重県津市)

#### ③カビの抑制 (ウンシュウミカン)


#### 無処理

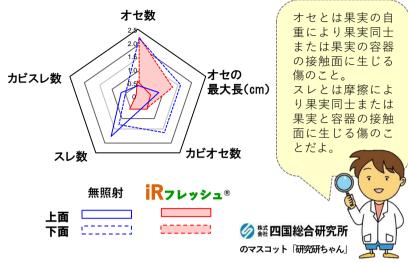
#### 処理



柑橘選果場への実装事例

## 4生菌数の抑制(カットキャベツ)




(10℃・3日保管後、一般生菌数を分析)

# 3.イチゴへ Rフレッシュ®の効果



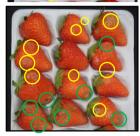
イチゴに一度 Rフレッシュ® 処理するだけで、果実品質の向上(ビタミンCの維持、軟化抑制、つやの維持等)が図れます。

#### (1)オセ・スレの抑制



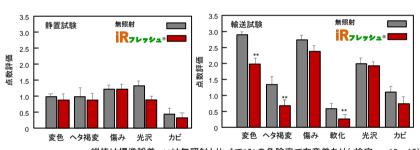
'さがほのか'1個あたりに発生するオセ・スレ・カビの発生状況と照射による抑制効果 オセ数、オセの最大長(cm)、カビオセ数、スレ数、カビスレ数(10℃、一週間後、n=13)

#### 無照射




上面

下面








'さがほのか'上面下面に及ぼすオセ・スレ・カビの発生状況 (黄色の円:オセ・スレ、緑色の円:カビ)

#### ②内部品質の向上



| 静置試験                 | 硬度(kg)         | 糖度(%) | 酸度(%)         | ビタミンC<br>(mg/l) |
|----------------------|----------------|-------|---------------|-----------------|
| 無照射                  | 0.49           | 10.4  | 0.88          | 638             |
| iRフレッシュ <sup>®</sup> | 0.49           | 10.6  | 0.87          | 660*            |
|                      |                |       |               |                 |
| 輸送試験                 | 硬度(kg)         | 糖度(%) | 酸度(%)         | ビタミンC<br>(mg/l) |
| 輸送試験無照射              | 硬度(kg)<br>0.46 | 糖度(%) | 酸度(%)<br>0.78 |                 |

\*、\*\*は無照射と比べて5%と1%の危険率で有意差あり(t検定、n=9~15)

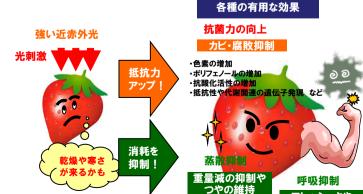
近赤外光照射が'女峰'の外観と内部品質に及ぼす影響 (0:なし、1:小程度、2:中程度、3:顕著)

#### ③硬さの維持と損傷程度の低減

#### 無照射










'女峰'の輸送直後の損傷状況(輸送中に通常より強い衝撃が加わったものと思われる)

上:輸送直後のイチゴ、下:イチゴの汁がついたトレーの様子

#### 4.作用メカニズム



#### 5.イチゴ用照射装置の設置事例



▲ 作業の様子



イチゴ用照射装置